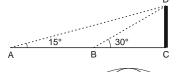
ALLENAMENTO ON-LINE - GARA DI MATEMATICA A SQUADRE (03/11/2025) SOLUZIONI

1. QUESTIONE DI PUNTI DI VISTA [5]

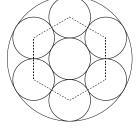
Detto C il piede e D la cima del palo, osserviamo che il triangolo ABD è isoscele con AB = BD e BDC è mezzo triangolo equilatero, con $DC = \frac{1}{2}BD$. Il palo DC è alto $\frac{15^{\circ}}{A}$ $\frac{30^{\circ}}{B}$



5 m.

2. CERCHI TANGENTI [3]

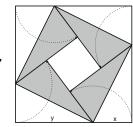
La situazione descritta dal problema è quella di 7 circonferenza uguali, come rappresentato in figura. $\frac{r}{r'} = \frac{3r'}{r'} = 3$.



3. PIEGARE IL QUADRATO [8]

Se l è il lato del quadrato, allora il quadrato interno ha lato $\frac{1}{4}l$.

Accade che x + y = l, e, osservando il lato del quadrato interno e come avviene la piega, $y-x=\frac{1}{4}l$. Sommando le due equazioni si ottiene $y=\frac{5}{8}l$ e di conseguenza $x=\frac{3}{8}l$.

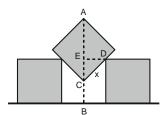


$$\frac{y}{x} = \frac{\frac{5}{8}}{\frac{3}{8}} = \frac{5}{3}.$$

La risposta richiesta è 5+3=8.

4. UN QUADRATO SOLLEVATO [1914]

Sia CD = x, $ED = EC = \frac{x}{\sqrt{2}}$. Possiamo determinare x, visto che $2ED = \frac{2x}{\sqrt{2}} = 1$ e quindi



$$x = \frac{\sqrt{2}}{2}$$
 . Ora $CB = 1 - CB = 1 - \frac{\sqrt{2}}{2\sqrt{2}} = \frac{1}{2}$ e di conseguenza

$$AB = AC + CB = \sqrt{2} + \frac{1}{2} = \frac{2\sqrt{2} + 1}{2} \text{ m} \approx 1914, 2 \text{ mm}.$$

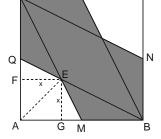
5. PARTE DI UN QUADRATO [666]

Prima soluzione

Sia l il lato del quadrato. Detto E il punto di intersezione tra DM e QB e siano F e Gle perpendicolari ai lati mandate da E. Per costruzione EF = EG = x.

I triangoli AMD e GME sono simili, quindi AD:EG=AM:GM e quindi

$$l: x = \frac{l}{2}: \frac{l}{2} - x$$
 da cui otteniamo $x = \frac{l}{3}$.



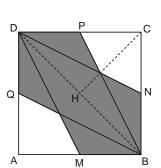
L'area cercata la possiamo ottenere per differenza:

$$A_{Grigia} = A_{ABCD} - 4 \cdot A_{AEM} = l^2 - 4 \cdot \frac{l}{2} \cdot \frac{l}{3} \cdot \frac{1}{2} = \frac{2}{3} l^2 = \frac{2}{3} \cdot 1000 \text{ cm}^2 \approx 666,66 \text{ cm}^2$$
.

Seconda soluzione

Osserviamo il triangolo DBC . Siccome BP e DN sono mediane, il loro punto di intersezione è il baricentro del triangolo DBC . Questo implica anche che l'area della parte

grigia del triangolo è $\frac{2}{3}$ della sua area, così come per il quadrato.



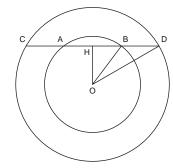
$$A_{Grigia} = \frac{2}{3} A_{ABCD} = \frac{2}{3} \cdot 1000 \text{ cm}^2 \cong 666,66 \text{ cm}^2.$$

6. NEI CERCHI [1385]

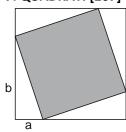
Riferendoci alla figura a fianco abbiamo:

$$OH = \sqrt{5^2 - 3^2} = 4 \text{ m}$$
; $HD = \sqrt{8^2 - 4^2} = \sqrt{48} = 4\sqrt{3} \text{ m}$;

$$CD = 2HD = 8\sqrt{3} \text{ m} \cong 1385, 6 \text{ cm}.$$



7. QUADRATI [267]



Siano $a \in b$ le due parti in cui è diviso il lato del quadrato più grande.

Sappiamo che
$$(a+b)^2 = 9 \text{ m}^2$$
, cioè $a+b=3 \text{ m}$ e che $\frac{ab}{2} = \frac{9-6}{4} \text{ m}^2$, cioè $ab = \frac{3}{2} \text{ m}^2$.

Sfruttando le equazioni di secondo grado risolviamo $x^2 - 3x + \frac{3}{2} = 0$ le cui soluzioni sono

proprio
$$a \in b$$
: $a,b = \frac{3 \pm \sqrt{9-6}}{2} = \frac{3 \pm \sqrt{3}}{2}$.

II rapporto cercato vale
$$\frac{a}{b} = \frac{3 - \sqrt{3}}{3 + \sqrt{3}} = \frac{12 - 6\sqrt{3}}{6} = 2 - \sqrt{3}$$

La risposta richiesta è $1000(2-\sqrt{3}) \cong 267.9$.

8. CHIAROSCURO [1582]

Chiamate le aree come in figura si osserva che:

$$Z+D+Y=A+X+B+C+K$$
 e che $X+D+K=A+Z+B+Y+C$.

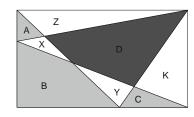
Ricaviamo la parte grigio chiaro dalle due equazioni:

$$A+B+C=Z+D+Y-X-K$$

$$A+B+C=X+D+K-Z-Y$$

Sommiamo le due equazioni:

$$2(A+B+C) = 2D$$
, quindi $A+B+C = D = 1582 \text{ cm}^2$



9. UN ESAGONO IN PARTI [765]

Tracciate le altezze uscenti da P , siano H e K rispettivamente i punti sui segmenti BC e AD . Detta PH=x , dalle informazioni del problema abbiamo:

$$\frac{lx}{2} = 80 \text{ cm}^2 \text{ e } 2l \left(\frac{l\sqrt{3}}{2} - x \right) \frac{1}{2} = 95 \text{ cm}^2.$$

Quest'ultima equazioni possiamo scriverla $\frac{l^2\sqrt{3}}{2} - lx = 95 \text{ cm}^2$ e qui

$$\frac{l^2\sqrt{3}}{2} = 160 + 95 = 255 \text{ cm}^2.$$

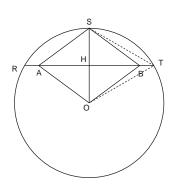
L'area dell'esagono misura: $A_{ABCDEF} = 6 \cdot l \frac{l\sqrt{3}}{2} \cdot \frac{1}{2} = 3 \cdot \frac{l^2 \sqrt{3}}{2} = 3 \cdot 255 = 765 \text{ cm}^2$.

10. PUNTI IN CERCHIO [64]

Sia r il raggio della circonferenza. Dalla relazione OA = AS = SB = BO scopriamo che il quadrilatero ASBO è un rombo e quindi $SH \perp RT$ e $SH = \frac{1}{2}OS = \frac{1}{2}r$.

Il triangolo SOT è equilatero di lato r . Abbiamo cioè $\frac{r}{2}\sqrt{3}=24\sqrt{3}$ e quindi $r=48~\mathrm{m}$.

Per il Teorema di Pitagora $AB = 2BH = 2\sqrt{OB^2 - OH^2} = 2\sqrt{40^2 - 24^2} = 2 \cdot 32 = 64 \text{ m}.$

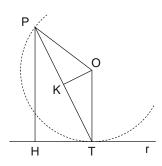


11. PUNTO-RETTA-CERCHIO [169]

Il centro O della circonferenza tangente in T a r e passante per P si trova sulla perpendicolare a r mandata da T e sulla perpendicolare a PT mandata dal suo punto medio.

I triangoli PHT e TKO sono simili: PH: KT = PT: OT

288:156=312:x,
$$x = \frac{156 \cdot 312}{288} = 169 \text{ cm}.$$



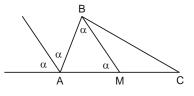
12. PARALLELO [223]

Siccome la bisettrice dell'angolo esterno è parallela a BM , gli angoli $A\hat{B}M=A\hat{M}B$ e

quindi
$$AM = AB = \frac{1}{2}AC = 15 \text{ m}.$$

Per la formula della mediana abbiamo:

$$BM = \frac{1}{2}\sqrt{2AB^2 + 2BC^2 - AC^2} = \frac{1}{2}\sqrt{2\cdot15^2 + 2\cdot35^2 - 30^2} = 10\sqrt{5} \text{ m} = 223,61 \text{ dm}.$$



13. DOVE SI INCONTRANO LE DIAGONALI [1732]

 $\frac{BE}{ED} = \frac{A_{ABC}}{A_{ADC}}$ in quanto i due triangoli hanno la stessa base AC ed altezze

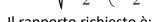
proporzionali ai segmenti BE ed ED.

Sia, per comodità, AC = x. Dai dati del problema si ha $x^2 = 15^2 + 18^2 = 549$.

Determiniamo, con la formula di Erone, le aree dei due triangoli:

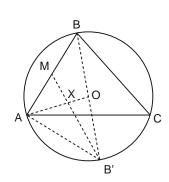
$$A_{ABC} = \sqrt{\frac{33 + x}{2} \left(\frac{33 + x}{2} - x\right) \left(\frac{33 + x}{2} - 15\right) \left(\frac{33 + x}{2} - 18\right)} = \frac{1}{4} \sqrt{(33^2 - x^2)(x^2 - 9)} = 135 \text{ cm}^2$$

$$A_{ABD} = \sqrt{\frac{27 + x}{2} \left(\frac{27 + x}{2} - x\right) \left(\frac{27 + x}{2} - 15\right) \left(\frac{27 + x}{2} - 12\right)} = \frac{1}{4} \sqrt{(27^2 - x^2)(x^2 - 9)} = 45\sqrt{3} \text{ cm}^2.$$



$$\frac{BE}{ED} = \frac{A_{ABC}}{A_{ADC}} = \frac{135}{45\sqrt{3}} = \sqrt{3}$$

La soluzione richiesta è $1000\sqrt{3} \cong 1732$.



14. TRIANGOLO NEL CERCHIO [3130]

Per il triangolo ABB', X è il baricentro in quanto sia BM che AO sono mediane. Ma AO è anche il raggio della circonferenza circoscritta al triangolo ABC.

Quindi
$$AX = \frac{2}{3}AO = \frac{2}{3} \frac{7 \cdot 8 \cdot 9}{4 \cdot \sqrt{12 \cdot (12 - 7)(12 - 8)(12 - 9)}} = \frac{2}{3} \frac{7 \cdot 8 \cdot 9}{4 \cdot 12\sqrt{5}} = \frac{7}{5} \sqrt{5} \text{ cm}.$$

La risposta richiesta è $1000\frac{7}{5}\sqrt{5}\cong 3130,54$.

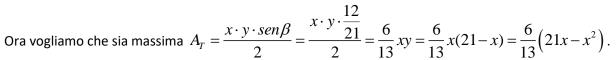
15. TAGLIO DEL TRIANGOLO [1349]

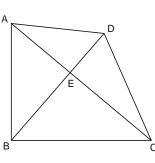
Scegliamo di tracciare la retta in modo da formare il triangolo con l'angolo più grande dei tre. Siano $x \in y$ le parti dei due lati ottenute.

Per la condizione del problema deve essere che x+y=13-x+14-y+15, cioè x+y=21.

L'area del triangolo ABC , sfruttando Erone misura $84~\mathrm{cm^2}$ e quindi, per la formula

dell'area generalizzata di un triangolo possiamo scrivere $\frac{13 \cdot 14 \cdot sen\beta}{2} = 84$ da cui ricaviamo $sen\beta = \frac{12}{13}$.





Nella parentesi è rimasto un polinomio di secondo grado, una parabola con la concavità rivolta verso il basso, che ha il suo massimo nel vertice, cioè in $x = \frac{21}{2}$.

II massimo è quindi
$$A_T = \frac{6}{13} \frac{441}{4} = \frac{1323}{26} \text{ cm}^2$$
.

La soluzione richiesta è 1323+26=1349

16. ANGOLI UGUALI [2236]

La chiave fondamentale per risolvere il problema è riconoscere nei punti $P \in Q$ le intersezioni del segmento AM con le circonferenze di centri $A \in C$. Infatti la corda DB ha angolo al centro 90° e di conseguenza angoli alla circonferenza di 45° e 135° .

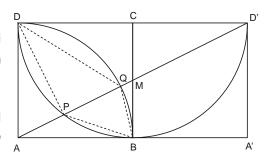
Se il quadrato ha lato l, allora AQ = l.

Rimane da calcolare AP. Creando il quadrato BA'D'C, simmetrico di ABCD rispetto al lato BC, si osserva che AP è la proiezioni del cateto AD sull'ipotenusa AD' per il triangolo ADD'.

Per il Primo Teorema di Euclide, abbiamo AP:AD=AD:AD' e quindi

$$AP = \frac{AD^2}{AD'} = \frac{l^2}{\sqrt{(2l)^2 + l^2}} = \frac{l}{\sqrt{5}}.$$

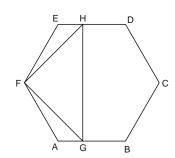
Il rapporto cercato è
$$1000\frac{AQ}{AP}=1000\frac{l}{\sqrt{5}}=1000\sqrt{5}\cong 2236,1$$
 .



17. ESAGONO 1 [300]

Il triangolo $G\!F\!H$ è un triangolo rettangolo isoscele di ipotenusa $20\sqrt{3}~{\rm cm}$.

La sua Area è
$$\frac{(20\sqrt{3})^2}{4} = 300 \text{ cm}^2$$
.



18. ESAGONO 2 [61]

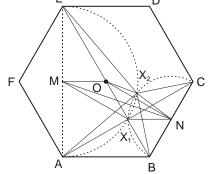
I possibili punti X sono i punti di intersezione delle circonferenze di diametro BC (e centro N) e AE (con centro in M).

Siccome ABCE è un deltoide, X_1 è il punto di intersezione tra EB e AC (tra loro perpendicolari) e quindi detto l

il lato dell'esagono, $BX_1 = \frac{l}{2}$ e $OX_1 = l - \frac{l}{2} = \frac{l}{2}$.

Osserviamo prima di tutto che il quadrilatero $MONX_1$ è un parallelogramma, in quanto $MO=NX_1$ e $MO//NX_1$.

Siccome $M\hat{X}_1N=30^\circ+90^\circ+30^\circ=150^\circ$, anche $M\hat{O}N=150^\circ$ e di conseguenza anche $M\hat{X}_2N=150$ visto che MX_2NX_1 è un deltoide ($NX_1=NX_2$ e $MX_1=MX_2$)



Il quadrilatero MOX_2N risulta ciclico, possiamo applicare il Teorema di Tolomeo:

 $MO \cdot X_2N + MN \cdot OX_2 = MX_2 \cdot ON$ che con le informazioni che abbiamo diventa:

$$\frac{l}{2} \cdot \frac{l}{2} + MN \cdot OX_2 = \frac{l\sqrt{3}}{2} \cdot \frac{l\sqrt{3}}{2}.$$

Possiamo determinare la misura di MN sfruttando il Teorema di Pitagora:

$$MN = \sqrt{\left(\frac{l\sqrt{3}}{2} + \frac{l\sqrt{3}}{4}\right)^2 + \left(l + \frac{l}{4}\right)^2} = \frac{l\sqrt{7}}{2}.$$

E quindi
$$OX_2 = \frac{\frac{3}{4}l^2 - \frac{1}{4}l^2}{\frac{l\sqrt{7}}{2}} = \frac{\sqrt{7}}{7}l$$

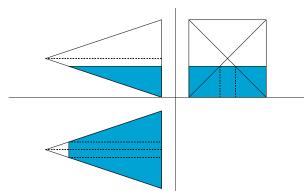
La soluzione richiesta è $\mathit{OX}_1 + \mathit{OX}_2 = 35 + 10\sqrt{7} \cong 61,457$.

19. LA PRIRAMIDE DISTESA [176]

Rappresentando la situazione in proiezioni ortogonali, come in figura, ci rendiamo conto della forma del solido formato dal liquido, solido che possiamo scomporre in due piramidi a base quadrata ed un prisma a base triangolare.

Con una proporzione sul piano verticale possiamo calcolare il cateto maggiore del triangolo azzurro: che è anche l'altezza della piramide a base quadrata: 15:5=x:4 da cui otteniamo $x=12~\mathrm{cm}$.

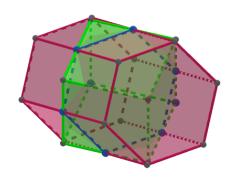
$$V = V_{PRISMA} + 2V_{PIRAMIDE} = \frac{12 \cdot 4}{2} \cdot (10 - 8) + 2 \cdot \frac{1}{3} \cdot 4 \cdot 4 \cdot 12 = 48 + 128 = 176 \text{ cm}^3.$$

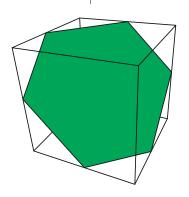


20. UN CUBO E UN PRISMA [1620]

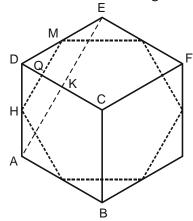
La situazione è complicata da vedere. L'esagono si ottiene unendo i punti medi di 6 lati, come in figura.

L'intersezione del prisma infinito con il cubo genera una situazione come in figura:





Degli 8 vertici del cubo, solo 2 sono completamente inglobati dal prisma. Gli altri 6 formano delle piramidi rette. Rappresentiamo la situazione proiettando la vista dall'alto con l'esagono sul piano del foglio:



Ragioniamo sulle facce ABCD e CDEF del cubo che formano la piramide retta DMHQ.

Si osserva subito, per la natura dell'esagono sezione che $DM = DH = \frac{1}{2}AB$.

Tracciando (sulla proiezione) il segmento AE che intercetta il punto Q su DC osserviamo che $DK = \frac{1}{2}AB$ e

$$DQ = \frac{1}{2}DK.$$

$$V = 12^3 - 6 \cdot \frac{1}{3} \cdot \frac{6 \cdot 6}{2} \cdot 3 = 1620 \text{ cm}^3$$
.